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Abstract. The effects of impurity and spin–orbit scattering potentials can strongly affect the
Zeeman response of a d-wave superconductor. Here, both the phase diagram and the quasiparticle
density of states are calculated within the Born approximation and it is found that the spin–orbit
interaction influences in qualitatively different ways the Zeeman responses of d-wave and s-wave
superconductors.

1. Introduction

The layered structure of cuprates makes these materials good candidates for observing Zeeman
response to a magnetic fieldH directed parallel to the Cu–O planes [1–3]. Moreover, the dx2−y2

symmetry of the order parameter (hereafter d wave) leads in principle to substantial differences
with respect to the Zeeman response of isotropic s-wave superconductors. For example, at
zero temperature, the tunnelling conductanceσs(0) of a d-wave superconductor–insulator–
metal junction is non-zero for finite voltagesV providedH 6= 0 [1,2], in sharp contrast to the
case for ordinary isotropic s-wave junctions, for whichσs(0) is zero forV < 1/e, where1 is
the energy gap ande is the electron charge [4]. On the other hand, the phase diagrams of pure
s-wave and d-wave superconductors in the presence of a Zeeman magnetic field have similar
qualitative behaviours. For example, for both symmetries of the order parameter, a first-order
phase transition to the normal state is found at low temperatures and for sufficiently strong
magnetic fields [1,5]. However, there are quantitative differences. For example, atT = 0, the
critical field isµBHc/10 = 1/

√
2 for s waves [5,6] andµBHc/10 ' 0.56 for d waves [1,2],

where10 is the zero-temperature order parameter without magnetic field andµB is the Bohr
magneton.

So far, systematic theoretical studies of the Zeeman response of anisotropic super-
conductors have been focused on the clean limit of the d-wave BCS formulation [1–3]. A more
realistic situation would require the inclusion of impurity effects, since these are known to have
important effects on both thermodynamic and spectral quantities [7]. Moreover, in addition to
the disorder potential, the quasiparticles are also spin–orbit coupled to the impurities, so the
Zeeman response is affected by spin-mixing processes. An additional source for spin–orbit
effects could be provided by the electric fields in the vicinity of the conducting Cu–O layers
and the charge reservoir interfaces.

0953-8984/00/071329+10$30.00 © 2000 IOP Publishing Ltd 1329
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Although, in the past few years, the effect of spin–orbit coupling has been intensively
studied for isotropic s-wave superconductors [4, 8], the corresponding situation for d-wave
superconductors (or other anisotropic symmetries) is still unknown. However, it is expected
that the spin–orbit effects on the Zeeman response of d-wave superconductors differ from
those for s-wave superconductors in a qualitative way. In fact, even at zero magnetic field,
the spin–orbit scattering is pair breaking and reduces both the critical temperatureTc and the
order parameter [9]. As a consequence, forH 6= 0, the pair-breaking effects of the external
magnetic field and the spin–orbit coupling add together. This situation must be contrasted
with the s-wave case, where the spin–orbit potential is not pair breaking and competes with
the Zeeman response, reducing the pair-breaking effect of the magnetic field [4].

In this paper, the effects of both impurity and spin–orbit scattering potentials are studied
within a self-consistent Born approximation for d-wave superconductors. Both thermodynamic
and spectral properties are investigated and compared with those of s-wave superconductors.

2. Born approximation

Let us consider a two-dimensional system with electrons (holes) moving in thex–y plane
under the influence of an external magnetic fieldH directed along the plane. In this situation,
the coupling of the orbital motion of the charge carriers to the magnetic field is vanishingly
small. In the following, no particular pairing mechanism is assumed and the condensate will
be described within the BCS formalism. In this framework, the Hamiltonian is

H0 =
∑
k,α

ε(k)c†
kαckα − I

∑
kα

αc
†
kαckα −

∑
k

1(k)(c†
k↑c

†
−k↓ + c−k↓ck↑) (1)

whereI = µBH andµB is the Bohr magneton. For a dx2−y2 symmetry of the gap,1(k) is
parametrized as follows:

1(k) = 1 cos(2φ) (2)

whereφ is the polar angle in thekx–ky plane. In equation (1),↑ and↓ refer to the spin
directions along and opposite to the direction ofH, and it is assumed thatH is directed along
thex-direction, so thatH = H x̂.

The interaction Hamiltonian describing the coupling to the impurities located randomly
atRi is given below:

H ′ = vimp

∑
kk′i

∑
α

e−i(k−k′)·Ri c
†
kαck′α + i

vso

k2
F

∑
kk,i

∑
α,β

e−i(k−k′)·Ri ([k × k′] · σαβ)c†
kαck′β (3)

where vimp and vso refer to the non-magnetic and spin–orbit coupling to the impurities,
respectively (kF is the Fermi momentum). From the Elliott relation [10], the impurity and
spin–orbit potentials are roughly given byvso ∼ 1g vimp, where1g is the shift of theg-
factor which, for cuprates, is of order 0.1. Here, however,vimp andvso will be treated as
independent variables. Note that, since the momentak andk′ are defined in thex–y plane,
the spin-momentum dependence of the spin–orbit interaction simplifies to

[k × k′] · σαβ = [k × k′] · ẑ σ zαβ. (4)

Since the spins have been quantized along thex-axis, the spin–orbit coupling leads to scattering
events always accompanied by spin-flip transitions.
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The following analysis is simplified by introducing the usual four-component field
operators [8,11]:

9k =


ck↑
c−k↓
c

†
k↑

c
†
−k↓

 9
†
k =

[
c

†
k↑, c

†
−k↓, ck↑, c−k↓

]
. (5)

From equations (1), (3) it is possible to evaluate the equation of motion of the field operator
9k in imaginary timeτ :
d9k
dτ
= −ε(k)ρ39k −1(k)ρ2τ29k + Iρ3τ39k

−
∑
k′,i

ei(k−k′)·Ri

[
vimpρ3 + i

vso

k2
F

[k × k′] · ẑ τ1

]
9k′ (6)

where the productsρiτj are 4× 4 matrices acting on the field operators (5). They are con-
structed by treating the Pauli matricesτj as elements of the Pauli matricesρi as shown in the
example below:

ρ2τ2 =
(

0 −iτ2

iτ2 0

)
. (7)

Equation (6) permits us to evaluate the equation of motion of the generalized Green’s
function, defined as

G(k,k′; τ) = −〈Tτ9k(τ )9†
k′(0)〉 (8)

whereTτ is the τ -order operator. It is straightforward to obtain from equations (6) and
(8) the equation satisfied by the generalized Green’s function in the Matsubara frequencies
ωn = (2n + 1)πT :

G(k,k′; iωn) = δk,k′G0(k, iωn) +G0(k, iωn)
∑
k′′

∑
i

ei(k−k′′)·Ri V (k,k′′)G(k′′,k′; iωn)

(9)

where

V (k,k′′) = vimpρ3 + i
vso

k2
F

[k × k′′] · ẑτ1 (10)

and

G0(k, iωn) = [iωn − ε(k)ρ3−1(k)ρ2τ2 − Iρ3σ3]−1 (11)

is the Green’s function in the absence of impurities.
The average over all the impurity configurations of equation (9) leads to the averaged

Green’s functionḠ which satisfies the following Dyson equation [11]:

Ḡ−1(k, iωn) = G−1
0 (k, iωn)−6(k, iωn) (12)

where6 is the electron self-energy resulting from the averaging procedure. In this paper,vimp

andvso are assumed to be sufficiently weak to justify a self-consistent Born approximation
for the self-energy6. Because of the momentum dependence of the spin–orbit interaction,
the Feynman diagrams describing the Born approximation do not involve impurity–spin–orbit
mixed terms and6 is given by the diagrams shown in figure 1. Therefore, using equation (10),
the self-consistent Born approximation for6 reads

6(k, iωn) = n
∑
k′
V (k,k′)Ḡ(k′, iωn)V (k′,k)

= nv2
imp

∑
k′
ρ3Ḡ(k

′, iωn)ρ3 + n
v2

so

k4
F

∑
k′
|k × k′|2τ1Ḡ(k

′, iωn)τ1 (13)
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Figure 1. Feynman diagrams for the self-
energy in the self-consistent Born approximation.
The impurity and spin–orbit interactions are
represented by dashed and dot–dashed lines,
respectively.

wheren is the concentration of impurities.
Equations (12) and (13) must be solved self-consistently and the solution can be written

in terms of the following renormalized Green’s function [8,11,12]:

Ḡ−1(k, iωn) = i(ω̃ − iĨ ρ3σ3)− ρ3(ε̃ − i3̃ρ3σ3)− ρ2σ2(1̃− i�̃ρ3σ3) (14)

where for brevity the momentum and frequency dependence of the quantities with tildes has
been omitted. The renormalized quantities can be calculated by substituting equation (14) into
equations (12), (13). If there is particle–hole symmetry, the quasiparticle dispersion remains
unaffected by the presence of impurities, i.e.,ε̃ = ε(k) and3̃ = 0. For the other quantities it
is useful to introduce the variablesω̃± and1̃± defined by

ω̃± = ω̃ ± iĨ 1̃± = 1̃± i�̃. (15)

In this way the self-consistent equations become

ω̃± = ωn ± iI + nv2
imp

∑
k′

ω̃±
ε(k′)2 + 1̃2± + ω̃2±

+ n
v2

so

k4
F

∑
k′

|k × k′|2ω̃∓
ε(k′)2 + 1̃2∓ + ω̃2∓

(16)

1̃± = 1(k) + nv2
imp

∑
k′

1̃±
ε(k′)2 + 1̃2± + ω̃2±

+ n
v2

so

k4
F

∑
k′

|k × k′|21̃∓
ε(k′)2 + 1̃2∓ + ω̃2∓

. (17)

The summations over momenta are transformed into integrations over energy according to the
usual procedure:∑

k′
→ V

∫
d2k′

(2π)2
' N0

∫ 2π

0

dφ′

2π

∫
dε (18)

whereN0 is the electronic density of states per spin state at the Fermi level. Performing the
integration over the energyε, equations (16) and (17) reduce to

ω̃± = ωn ± iI +
1

2τ

∫
dφ′

2π

ω̃±
[ω̃2± + 1̃±(φ′)2]1/2

+
1

τso

∫
dφ′

2π

S(φ, φ′)ω̃∓
[ω̃2∓ + 1̃∓(φ′)2]1/2

(19)

1̃±(φ) = 1(φ) +
1

2τ

∫
dφ′

2π

1̃±(φ′)

[ω̃2± + 1̃±(φ′)2]1/2
+

1

τso

∫
dφ′

2π

S(φ, φ′)1̃∓(φ′)

[ω̃2∓ + 1̃∓(φ′)2]1/2
(20)

whereτ−1 and(τso)
−1 are the scattering rates for the non-magnetic and spin–orbit impurities,

respectively. They are given by

1

τ
= 2πnv2

impN0
1

τso
= πnv2

soN0. (21)

In equations (19), (20), the functionS(φ, φ′) stems from the angular dependence of the spin–
orbit factor|k̂×k̂′|2 on definingφ andφ′ as the polar angles of the vectorsk andk′, respectively.
In explicit form, the functionS(φ, φ′) is given by

S(φ, φ′) = cos(φ)2 sin(φ′)2 + sin(φ)2 cos(φ′)2 − 1

2
sin(2φ) sin(2φ′). (22)
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The presence of such an angular function leads to important differences between non-magnetic
and spin–orbit impurity effects also for zero magnetic field. In fact, non-magnetic impurities
do not renormalize the gap function when this has d-wave symmetry [7] whereas the spin–
orbit interaction, by means of the angular functionS(φ, φ′), provides a finite renormalization.
This can be readily seen by realizing that if1(φ) is of the form given by equation (2), then a
consistent solution of equation (20) is provided by setting1̃±(φ) = 1̃± cos(2φ), where1̃±
is the solution of

1̃± = 1 +
1

τso

∫
dφ

2π
sin(φ)2

1̃∓ cos(2φ)

[ω̃2∓ + 1̃2∓ cos(2φ)2]1/2
(23)

and, in the same way, equation (19) becomes

ω̃± = ωn ± iI +
1

2τ

∫
dφ

2π

ω̃±
[ω̃2± + 1̃2± cos(2φ)2]1/2

+
1

τso

∫
dφ

2π
sin(φ)2

ω̃∓
[ω̃2∓ + 1̃2∓ cos(2φ)2]1/2

. (24)

In obtaining equations (23), (24), we have used the identity∫
dφ

2π
cos(φ)2f [cos(2φ)] =

∫
dφ

2π
sin(φ)2f [− cos(2φ)] (25)

wheref [cos(2φ)] is a general function of cos(2φ).
As expected, the scalar impurity scattering contribution has disappeared from the gap

renormalization (23). In contrast, the spin–orbit interaction modifies the gap function because
of the presence of the angular function (22). Moreover, equations (23) and (24) are renorm-
alized in a different way byvso so, even at zero magnetic field, the spin–orbit interaction
contributes to the thermodynamic and spectral properties of d-wave superconductors. In fact,
all the measurable quantities can be expressed in terms ofũ± = ω̃±/1̃± [12] which from
equations (23), (24) satisfies the following equation:

ũ± = ωn ± iI

1
+

1

21τ

∫
dφ

2π

ũ±
[cos(2φ)2 + ũ2±]1/2

+
1

1τso

∫
dφ

2π
sin(φ)2

ũ∓ − ũ± cos(2φ)

[cos(2φ)2 + ũ2∓]1/2
.

(26)

The above equation should be compared with the corresponding expression for the two-
dimensional isotropic s-wave case which, on setting1(φ) = 1 in equations (19), (20), is
found to be [4,8,12]

ũ± = ωn ± iI

1
+

1

21τso

ũ∓ − ũ±
[1 + ũ2∓]1/2

(27)

where the contribution of the impurity scattering has vanished because of Anderson’s theorem.
WhenH = 0, equation (27) reduces tõu+ = ũ− = ωn/1 and does not depend on the
spin–orbit scattering rate, while equation (26) still depends onτ and τso. In fact, in a d-
wave superconductor, both the non-magnetic impurity and the spin–orbit scatterings are pair
breaking and they tend to suppress superconductivity [9]. WhenH 6= 0, one therefore expects
the Zeeman response of a d-wave superconductor to differ qualitatively from that of an s-wave
condensate.

3. Phase diagram

Equation (26) permits us to obtain all the information needed to calculate the phase diagram
of a dirty d-wave superconductor in a Zeeman magnetic field. Let us start by considering the
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self-consistent equation for the order parameter1:

1 = V0

4
T
∑
n

∑
k

cos(2φ)Tr[ρ2τ2Ḡ(k, iωn)] = λπT
∑
n

∫
dφ

2π
Re

cos(2φ)2

[cos(2φ)2 + ũ2
+]1/2

(28)

whereV0 is the pairing interaction andλ = V0N0. The summation over the frequencies is
implicitly assumed to be restricted by a cut-off energy. However, both the cut-off frequency
and the pairing interaction can be absorbed in the definition of the critical temperatureTc0 for
a pure superconductor (τ−1 = 0, τ−1

so = 0) without external magnetic field. In this way the
gap equation can be rewritten as

ln

(
T

Tc0

)
= 4πT

∑
n>0

{∫
dφ

2π
Re

(
1

1

cos(2φ)2

[cos(2φ)2 + ũ2
+]1/2

)
− 1

2ωn

}
. (29)

On the hypothesis that the transition to the normal state is of the second order (see below), the
critical temperatureTc is obtained from equation (28) by setting1→ 0 and it is given by

ln

(
Tc

Tc0

)
= ψ

(
1

2

)
− 1

2

[(
1 +

1

4τsob

)
ψ

(
1

2
+ a +

b

2πTc

)
+

(
1− 1

4τsob

)
ψ

(
1

2
+ a − b

2πTc

)]
(30)

wherea = (τ−1 + τ−1
so )/4πTc andb = [1/(4τso)

2 − I 2]1/2, andψ is the di-gamma function.
WhenI = µBH = 0, equation (30) reduces to

ln

(
Tc

Tc0

)
= ψ

(
1

2

)
− ψ

(
1

2
+

1

4πTcτ
+

3

4

1

2πTcτso

)
(31)

which coincides with the result obtained in reference [9] in the weak-scattering limit†. Equ-
ation (31) shows that, even at zero magnetic field, the spin–orbit scattering contributes together
with the non-magnetic impurity scattering to the suppression ofTc.

For large enough values of the external magnetic field, the transition to the normal state
becomes of first order [5]. This situation is studied by evaluating the difference in free
energy between the superconducting and the normal states,1F = Fs − Fn. If, on raising
the temperature and/or the magnetic field,1F changes sign while1 remains finite, then the
system undergoes a first-order phase transition to the normal state with critical fieldHc andTc

determined by1F = 0 [4]. Following reference [12],1F is obtained as

1F =
∫ V0

0
dV0 1

2 (32)

and by using equations (26), (28), one readily finds

1F = −N01 2πT
∑
n>0

∫
dφ

2π
Re

{
2[cos(2φ)2 + ũ2

+]1/2 − 2ũ+ − cos(2φ)2

[cos(2φ)2 + ũ2
+]1/2

}
.

(33)

The numerical solutions of equations (30) and (33) are shown in figure 2 for the pure limit
and, for comparison, the d-wave solution is plotted together with the s-wave one. In the phase
diagram, the solid and dashed lines are solutions of equations (30) and (33), respectively. For

† In reference [9] a different notation has been used in which the impurity potential is parametrized by0 = n/(πN0)

andc = 1/(πN0vimp) and the spin–orbit interaction is parametrized asvso = 1gvimp, where1g is the shift of the
electronicg-factor. Therefore, on using equation (21), 1/(2τ) = 0/c2 and 1/τso= 0(1g/c)2.



Zeeman response of d-wave superconductors: Born approximation1335

0.0 0.2 0.4 0.6 0.8 1.0
T/Tc0

0.0

0.2

0.4

0.6

0.8

1.0

µ B
H

c/∆
0

d−wave

s−wave

Figure 2. The phase diagram for pure s-wave and d-wave superconductors in the presence of a
Zeeman magnetic field.10 andTc0 are the order parameter and the critical temperature without
the external magnetic field, respectively. ForT/Tc0 > 0.56 the solid lines are the second-order
phase boundary between the normal (above the solid lines) and the superconducting (below the
solid lines) states. ForT/Tc0 < 0.56 both the s-wave and the d-wave states show a first-order
transition to the normal state marked by the dashed lines. In this region, the solid lines represent
the supercooling fields.

both d waves and s waves, the transition to the normal state is of second order forT/Tc0 > 0.56
[1,2,6] while for lower temperatures the transition, marked by dashed lines, becomes of first
order. ForT/Tc0 < 0.56 the solid lines represent the supercooling field [1, 2, 4]. As already
stated in the introduction, at zero temperature the first-order transition to the normal state
is obtained for critical fieldsµBHc/10 = 1/

√
2 [5] for s waves andµBHc/10 ' 0.56 for

d waves [1,2]. In this paper, the Fulde–Ferrel–Larkin–Ovchinnikov state [13] which appears at
low temperatures has not been considered since disorder tends to restore the zero-momentum
pairing [14]. For the pure d-wave case, the reader can find the phase diagram including the
non-zero-momentum pairing state in reference [1].

Although for the pure limit the phase diagrams of the Zeeman responses of s-wave and
d-wave superconductors are qualitatively similar, they drastically differ when the coupling to
the non-magnetic and spin–orbit impurity scatterings is switched on. In figures 3 and 4, the
phase diagrams for s-wave and d-wave superconductors are plotted for finite values ofτ−1

andτ−1
so . In both figures, the impurity scattering parameterbn = 1/(210τ) is set equal to

0.1, while the spin–orbit scattering parameterbso= 1/(210τso) assumes four different values:
bso = 0, 0.06, 0.12, 0.16. In the s-wave case, figure 3, the phase diagram is insensitive to
bn 6= 0, while finite values ofbso enhance the critical field for all temperatures. Moreover, the
temperature interval of first-order phase transition (dashed lines) decreases asbso increases and
for bso > 2.32 the transition becomes continuous for all temperatures [4]. This behaviour is
due to the spin-mixing effect of the spin–orbit interaction which lowers the Zeeman response
and consequently the depairing effect of the magnetic field. On the other hand, in the d-wave
case shown in figure 4, the spin–orbit scattering is pair breaking and forbso > 0 the critical
field is lowered. This situation can be understood by realizing that finite values ofbso lead to a
weakening of the superconducting state [9] with the result that, with respect to thebso= 0 case,
lower values ofH are needed to suppress the superconductivity completely. Another striking
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0.0 0.2 0.4 0.6 0.8 1.0
T/Tc0

0.0

0.2

0.4

0.6

0.8

1.0
µ B

H
c/∆

0

bso=0

bso=0.06

bso=0.12

bso=0.16

Figure 3. The phase diagram for an
s-wave superconductor with impurity and
spin–orbit scattering centres. The critical
field is unaffected by the impurity potential,
while it increases on increasing the spin–
orbit scattering parameterbso= 1/(210τso)

where10 is the order parameter in the pure
limit without magnetic field. The solid and
dashed lines have the same meaning as in
figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
T/Tc0

0.0

0.1

0.2

0.3

0.4

0.5

µ B
H

c/∆
0

b
so =

0

b
so =

0.06

b
so =

0.12

b
so =

0.16

Figure 4. The phase diagram for a d-wave superconductor with impurity and spin–orbit scattering
centres. The impurity scattering parameter isbn = 1/(210τ) = 0.1 where10 is the order
parameter in the pure limit without magnetic field. The solid and dashed lines have the same
meaning as in figure 2. Note that, contrary to the case shown in figure 3, forbso = 0.16 the
transition to the normal state is already of second order for the whole temperature range.

feature is that, due to the nodes of the d-wave order parameter, thebso-dependence of the phase
diagram is much stronger than for the s-wave case. In fact, forbso = 0.16 there is already
no signature for a first-order transition whereas for an s-wave superconductor the first-order
transition disappears only forbso> 2.36, i.e., a difference of one order of magnitude.

It is important to stress that the remarkable difference between the d-wave and s-
wave phase diagrams has been obtained in the Born limit of non-magnetic and spin–orbit
impurity scatterings. However, it is well known that in high-Tc superconductors the effect of
disorder is best described by the strongly resonant limit of the impurity potential, so the Born
approximation may be inadequate. In practice, one should formulate the Zeeman response by
employing thet-matrix approximation for both the non-magnetic and the spin–orbit potentials.
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Such a calculation has already been reported in reference [9] for zero external magnetic field.
The generalization forH 6= 0 is currently under investigation and the results reported here
may provide a useful tool for testing the more generalt-matrix solution.

4. Density of states

With the effect ofbn andbso on the phase diagram having been described, it is interesting to
investigate also how the spectral properties are modified. To this end, equation (26) must be
analytically continued to the real axis by setting iũ± → u± and iωn → ω. In this way, the
quasiparticle density of states (DOS) per spin direction in units of the normal state DOSN0

can be calculated using the following expression:

ρ±(ω) = N±(ω)
N0

= sgn(ω)
∫

dφ

2π
Re

u±
[u2± − cos(2φ)2]1/2

. (34)

In figure 5 we report the quasiparticle DOS forI = µBH = 0.1510, bn = 0.1, and different
values of the spin–orbit parameterbso. For clarity, the curves withbso 6= 0 have been vertically
shifted by 0.7, 2× 0.7, and 3× 0.7 with respect to those withbso = 0. Forbso = 0, the
two DOS per spin state,ρ+ (dashed lines) andρ− (solid lines), show a clear Zeeman splitting
and forω = 0 the total DOSρ = ρ+ + ρ− is different from zero as expected for a d-wave
superconductor. Forbso > 0 the total DOS atω = 0 is enhanced at the expense of the
coherence peaks which show a decrease of spectral weight. Moreover, atω ' µBH , ρ−
develops a structure (marked by the arrows) which becomes a peak atbso = 0.16. Such a
structure is even more clearly visible in figure 6 whereρ± is plotted forbn = 0.1, bso= 0.06,
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Figure 5. The Zeeman-split quasiparticle densities of
statesρ+(ω) (dashed lines) andρ−(ω) (solid lines) for a
d-wave superconductor withbn = 0.1,µBH/10 = 0.15,
and different values of the spin–orbit scattering parameter
bso. The curves for different values ofbso are vertically
shifted by multiples of 0.7. Note the structure (marked by
the arrows) atω ' µBH which develops asbso increases.

Figure 6. The Zeeman-split quasiparticle densities of
statesρ+(ω) (dashed lines) andρ−(ω) (solid lines) for
a d-wave superconductor withbn = 0.1, bso = 0.06,
and different values of the external magnetic field. The
curves for different values ofH are vertically shifted
by multiples of 0.7. The arrows indicate the resonant
structure which develops a peak forµBH > 0.3 (see the
text).



1338 C Grimaldi

and different values of the external magnetic field. The origin of this peak can be understood
from the following reasoning. At the Fermi wave-vector, and for a pure superconductor, the
quasiparticle energies for spin up and down areE±(φ) = 1| cos(2φ)| ± µBH and, therefore,
depending on the values ofH and1, two quasiparticles with different spin orientations and
anglesφ can have equal energies. For example, forφ1 = 0 andφ2 = π/4, the two energies
E−(φ1) andE+(φ2) are equal toω = µBH if 1 = 2µBH . Since the spin–orbit potential
connects quasiparticle states with different spin orientations but equal energies, the two states
E−(φ1) andE+(φ2) are coupled by the spin–orbit interaction and an enhanced signal should be
expected atω ' µBH . Note in fact that in figure 6 the low-energy peak is more pronounced
for µBH = 0.3510 where, since1 ' 0.6810, the condition1 = 2µBH is nearly fulfilled.

5. Conclusions

In conclusion, it has been shown within the Born approximation that the presence of
impurity and spin–orbit scattering centres strongly affects the Zeeman response of a d-wave
superconductor. Both the phase diagram and the quasiparticle density of states show features
qualitatively different from those of an s-wave superconductor. In fact, on increasing the
value of the spin–orbit scattering parameterbso= 1/(210τso) the critical fieldHc is strongly
lowered whereas in an s-wave superconductorHc increases. Moreover, the influence ofbso on
the superconducting state is much stronger for the d-wave symmetry. Concerning the spectral
properties, the Zeeman-split density of states of a d-wave superconductor shows interesting
features which are missing in an s-wave superconductor. In fact, for sufficiently large values
of bso and/orH a resonant peak develops at energies close toµBH . The origin of this feature
is given by the anisotropy of the order parameter and the spin-flip transitions due to the spin–
orbit scattering. An important open question concerns the possibility of going beyond the Born
approximation and employing at-matrix approach for the Zeeman response in the presence of
impurity and spin–orbit scattering centres in order to test the solidity of the results presented
here.
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